DOWNTOWN DALLAS SEPTEMBER 2022

COLLEGE OF ARCHITECTURE, PLANNING AND PUBLIC AFFAIRS THE UNIVERSITY OF TEXAS AT ARLINGTON

Downtown Dallas Parks Analysis → Table of Contents	
i	
DOWNTOWN DALLAS PARKS INTRODUCTION	
i.1 Public Space Downtown i.2 About the Team i.3 Special Thanks	 > 03 > 06 > 07
1	
CIVIC GARDEN PARK ANALYSIS	
1.1 Carbon Sequestration 1.2 Stormwater Runoff 1.3 Heat Island Effect	> 09 > 10 > 11
2	
PACIFIC PLAZA PARK ANALYSIS	
2.1 Carbon Sequestration 2.2 Stormwater Runoff 2.3 Heat Island Effect	$\begin{array}{c} \rightarrow 13 \\ \rightarrow 14 \\ \rightarrow 15 \end{array}$
3	
WEST END SQUARE PARK ANALYSIS	
3.1 Carbon Sequestration 3.2 Stormwater Runoff 3.3 Heat Island Effect	 → 17 → 18 → 19
4	
CARPENTER PARK ANALYSIS	
4.1 Carbon Sequestration 4.2 Stormwater Runoff 4.3 Heat Island Effect	 > 21 > 22 > 23
5	
HARWOOD PARK ANALYSIS	
5.1 Carbon Sequestration 5.2 Stormwater Runoff 5.3 Heat Island Effect	 25 26 27
a	
DOWNTOWN DALLAS PARKS APPENDIX	
a.1 Additional Information a.2 Sources & Limitations	> 29> 30

DOWNTOWN DALLAS PARKS PUBLIC SPACE DOWNTOWN

Public Space Downtown

Public space, and especially green public space, has always been a rare commodity in downtown Dallas. When Dallas County built its fifth county courthouse in 1890, known today affectionately as "Old Red," it set a pattern that would take more than 75 years to change. The new courthouse was built all the way to the edges of its lot, eliminating the small, fenced courthouse lawn that had surrounded earlier courthouses on the same spot. That decision, to eliminate that small hint of a courthouse square for the city of Dallas, meant that the young downtown was left without any official public space.

Dallas's city halls, like the 1890 courthouse, had no public commons. Other American cities like New York and New Orleans linked a grassy open plaza to their civic buildings but Dallas had no public space connected with its municipal buildings. Public parks were also scarce. The closest park to downtown Dallas was City Park, opened in 1886 and located south of the city's commercial core in the residential neighborhood. Dallas's city cemetery provided open green space at the southwest corner, hemmed in by railroad tracks and an ice factory and cold storage warehouse. Nearby, Ferris Plaza, a small square with a fountain, opened in 1918 to provide open space in front of the city's train terminal, Union Station.

Dallas developed across its first 100 years as a city focused on commerce, manufacturing, and connections to freight and transport, emphasizing private, commercial development of land rather than civic space. Sanborn Maps of Dallas from 1921 show a downtown core of industrial buildings (shown in red representing their masonry construction) surrounded by railroad tracks and wood-frame housing (shown in yellow) in Figure i.1.

"In general appearance Dallas confirms its business activities." –George E. Kessler, A City Plan for Dallas (1911)

While there were early calls to transform Dallas through parks, parkways, and a connection to the Trinity River from consultants like St. Louis based planner George E. Kessler, there was no serious commitment to the creation of public space in downtown Dallas until the 1960s. The Goals for Dallas program led by Mayor Erik Jonsson led directly to the creation of a new city hall designed by I. M. Pei, with a large public civic plaza whose design was managed by local landscape architecture firm Myrick, Newberg, & Dahlberg. While this was a serious commitment to public space, the plaza's potential was curtailed by its isolated location and its vast, unforgiving hardscape surfaces. Other initiatives sparked by the Goals for Dallas program also undermined public space for people and emphasized remaking downtown as a place that facilitated fast travel by car and created a tunnel system that drew people away from outdoor spaces into underground passages between buildings.

By the 1980s, Dallas, like most American cities, had pivoted to new strategies to revive flagging downtowns eviscerated by postwar white flight and rapid suburban growth. An early initiative focused on the revitalization of Main Street, and led to the creation of Pegasus Plaza, which opened in 1994. Redevelopment of office buildings and warehouses into lofts began, and the downtown population began to grow slowly. In 2009, Main Street Garden added to the growing list of small public spaces in downtown.

⁶⁶In general appearance, Dallas confirms its business activities.⁹⁹

George E. Kessler A City Plan for Dallas (1911)

Figure i.1 Sanborn Map of Downtown Dallas - 1921

Figure i.2 Map of Downtown Dallas - 2022

"Downtown Dallas still needs big ideas, but it also needs greening and softening and more **66** Downtown Dallas still needs connective tissue to pull its fragments together." -David Dillon, "Quick Fix Syndrome," Dallas Morning News (2002)

"It has been a difficult and imperfect project, and one that is far from complete, but downtown Dallas is gradually becoming a more hospitable and humane place. The latest sign of that progressive reinvention is the opening, on May 3, of Carpenter Park..." -Mark Lamster, "Downtown Dallas has a Glowing, \$20.1 Million New Park with a Landmark Work of Sculpture," Dallas Morning News (2022)

The ambitious program begun by Parks for Downtown Dallas in 2015 to create four new public parks in downtown Dallas is transformative, moving the city more rapidly toward a sustainable downtown that has the capacity to nurture civic life in public space. Guided by the City of Dallas's 2013 Downtown Parks Master Plan, and built with a combination of private and public funds, Pacific Plaza (2019), West End Square (2021), Carpenter Park (2022), and Harwood Park (2023), along with Civic Garden (2012, created by the Foundation's predecessor organization) create more of the "connective tissue" that architecture critic David Dillon identified as missing in his writing about Dallas twenty years ago.

In the following pages, our project team shares our analysis of a variety of benefits brought to Dallas by the Parks for Downtown Dallas program. While details of each analysis can be found in the next pages, we list a few key takeaways here:

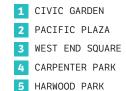
The five parks created by Parks for Downtown Dallas contribute to a more sustainable city by diverting excess stormwater runoff, contributing to carbon sequestration, and providing spaces that downtown residents and workers value for relaxation, exercise, and rejuvenation.

Areas for Potential Growth

- Carbon sequestration and air quality can be improved through future ٠ maintenance that adds additional trees, with attention paid to species and size
- Stormwater diversion can be increased through future maintenance that considers the possibility of bioswales and green infrastructure
- Future changes to paving and hardscape materials can be guided by evolving standards and criteria for materials with low embodied energy and high recycled content
- Awareness of the parks can be increased through inclusion in tour programs like Urban Armadillos and other means to link these new green spaces to each other and other public spaces downtown

big ideas, but it also needs greening and softening and more connective tissue to pull its fragments together."

David Dillion


"Quick Fix Syndrome, "Dallas Morning News (2002)

It has been a difficult and imperfect project, and one that is far from complete, but downtown Dallas is gradually becoming a more hospitable and humane place. The latest sign of that progressive reinvention is the opening, on May 3, of Carpenter Park... ??

Mark Lamster

"Downtown Dallas has a Glowing, \$20.1 Million New Park with a Landmark Work of Sculpture," Dallas Morning News (2022)

5 parks designed & built

DOWNTOWN DALLAS PARKS ABOUT THE TEAM

Parks for Downtown Dallas

Parks for Downtown Dallas (PfDD) sought to quantify the benefits of four new urban parks, in addition to a previously constructed park, that were recently designed and built in the heart of the City of Dallas. This study identifying the benefits of new green infrastructure will support the foundation's efforts to secure future funding to support park maintenance and development.

Research Team | University of Texas at Arlington

The University of Texas at Arlington (UTA) project team generated a set of prioritized areas of study and proposed methodologies comprising the contents of this report. Faculty members Professor Melanie Sattler (Civil Engineering), Assistant Professor Letora Anderson (Landscape Architecture), and Adjunct Assistant Professor Amanda Aman (Architecture) conducted the research for this study and assembled this report. Two University of Texas at Arlington courses were engaged in the study, involving students from landscape architecture and from civil engineering in data collection and analysis. Professor Kathryn Holliday (Architecture) assisted with continued coordination and communication with Parks for Downtown Dallas. PhD candidate Sally Ayuk conducted GIS spatial analysis, MLA student Patricia Cerda analyzed survey data, and MARCH graduate Cindy Nguyen collected temperature data.

PfDD

amy meadows

president chief executive officer

sarah hughes

vice president project director

UTA

melanie sattler

professor
civil engineering

letora anderson

assistant professor landscape architecture

amanda aman

adjunct assistant professor architecture

kathryn holliday

professor architecture

sally ayuk

PhD candidate urban planning & public policy

patricia cerda

MLA student landscape architecture

cindy nguyen

MARCH graduate architecture

DOWNTOWN DALLAS PARKS SPECIAL THANKS

Special Thanks

The project team would like to thank the following for their generous assistance during the course of this study.

Parks for Downtown Dallas Downtown Dallas, Inc. Hargreaves Jones SWA Dallas James Corner Field Operations Ten Eyck Landscape Architects

Ζ ш $\boldsymbol{\alpha}$ \triangleleft **C**

 \bigcirc н >

н

1

 \bigcirc

CIVIC GARDEN CARBON SEQUESTRATION | TREES

Carbon Sequestration | Trees

Carbon sequestration and stormwater runoff avoidance were calculated for the trees on site using i-Tree Eco v6. i-Tree Eco v6 is a software application within a suite of tools that utilizes data to estimate ecosystem services and structural characteristics of rural and urban forests. The application provides sampling and data collection protocols, automated processing, and final reports illustrating carbon sequestration in pounds, carbon storage in pounds, and avoided runoff in cubic feet.

i-Tree's database assigns values for each tree species and size types. The calculation used to determine CO^2 sequestered per tree (kg) = tree mass (kg of fresh biomass) x 65% (dry mass) x 50% (carbon %) x 3.67 x 120%. Avoided runoff is estimated based on local weather data from the nearest weather station.

Civic Garden's **114** trees sequester **0.7 metric tons** of atmospheric carbon and intercept approximately **4,619 gallons** of stormwater runoff annually. Carbon sequestered here equates to approximately **1,689 miles** driven by an average passenger vehicle annually.

114 trees planted on site

4,619 gallons/year stormwater runoff intercepted

0.7 metric tons/year carbon sequestered

= **1,689** miles/year driven by a passenger vehicle

top species

avoided runoff (gal)/year sequestration (lbs)/year

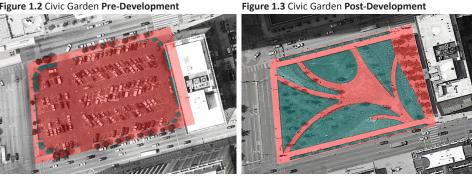
chinese elm	350 lbs	
shumard oak	1,197 gal	
shumard oak	340 lbs	
chinkapin oak	900 gal	
chinkapin oak	200 lbs	
chinese elm	822 gal	

Figure 1.1 Top Species for Avoided Runoff and Sequestration

STORMWATER RUNOFF **CIVIC GARDEN**

Stormwater Runoff

Stormwater runoff was calculated for the park for both pre- and post-development conditions. The total amount of stormwater runoff was calculated by utilizing the Rational Equation Method (**Q=CiA**) which equates peak discharge (runoff) of a drainage field (park) during a specific rain event.


1,029% pervious cover

Q (cfs): Peak Discharge C: Runoff Coefficient, unique to pervious and impervious ground conditions i (inches/hour): Rainfall Intensity A (acre): Drainage Area

Civic Garden prevents approximately 612,134 gallons of stormwater from entering the city stormwater system annually, primarily due to a 1,029% increase in pervious cover when compared to pre-development site conditions.

612, **134** gallons/year stormwater runoff avoided

Figure 1.2 Civic Garden Pre-Development

CIVIC GARDEN (2012)							
Stormwater Runoff Pre-Development							
Description	Area (sf)	A (area in acres)	i (inches/hour)	C (coefficient)	Q (Q=CiA) in cfs	Total Volume (cf/year)	Total Volume (gal/year)
Pervious	4,120.00	0.0946	0.0041	0.05	0.00001939	611.46	4,574.06
Impervious	77,762.00	1.7852	0.0041	0.70	0.00512344	161,572.73	1,208,647.85
Total	81,882.00					162,184.19	1,213,221.91

	Stormwater Runoff Post-Development						
Description	Area (sf)	A (area in acres)	i (inches/hour)	C (coefficient)	Q (Q=CiA) in cfs	Total Volume (cf/year)	Total Volume (gal/year)
Pervious	46,533.00	1.0683	0.0041	0.05	0.00021899	6,906.11	51,661.31
Impervious	35,349.00	0.8115	0.0041	0.70	0.00232901	73,447.63	549,426.36
Total	81,882.00					80,353.74	601,087.67

Total Difference

612,134.24

Figure 1.4 Stormwater Runoff Pre- and Post-Development Calculations

CIVIC GARDEN HEAT ISLAND EFFECT

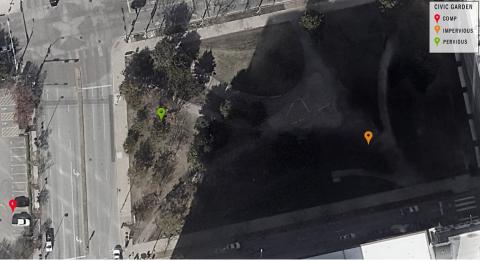
Heat Island Effect

In order to determine the cooling effect of the vegetation and tree canopy, the air temperature of the park was compared to the air temperature of an adjacent site with similar hardscape materials, but no vegetation or tree canopy. Multiple locations on each site were measured and averaged, and all temperature readings were taken during the same time periods on the same days. An ambient thermometer with 3 data loggers (with an accuracy of $\pm 1^{\circ}F$) was used to take readings approximately 12-15 inches above the ground.

The average air temperature in Civic Garden on a typical summer day was **reduced** by an average of **13.1°F in the morning** and **6.6°F in the afternoon** through the presence of canopy coverage and vegetation.

13.1	0	F 🗸	
average	AM	air	temp

6.6°F ↓ average PM air temp


Civic Garden	

Day 1: August 06, 2022				
Location	Time	Site Temp	Comp Site Temp	Difference
Site 1: Canopy/pervious cover				
	10a	87.1	100.8	13.7
	4p	100.6	107.8	7.2
Site 2: Canopy/impervious cover				
	10a	87.6	100.8	13.2
	4p	101.6	107.8	6.2

Temperature Data [°F]

Day 2: August 07, 2022

Location	Time	Site Temp	Comp Site Temp	Difference
Site 1: Canopy/pervious cover				
	10a	86.8	100.8	14.0
	4p	101.2	107.8	6.6
Site 2: Canopy/impervious cover				
	10a	89.2	100.8	11.6
	4p	101.4	107.8	6.4

 \triangleleft \triangleleft ____ \bigcirc н ш Н \bigcirc \triangleleft

PACIFIC PLAZA CARBON SEQUESTRATION | TREES

Carbon Sequestration | Trees

Carbon sequestration and stormwater runoff avoidance were calculated for the trees on site using i-Tree Eco v6. i-Tree Eco v6 is a software application within a suite of tools that utilizes data to estimate ecosystem services and structural characteristics of rural and urban forests. The application provides sampling and data collection protocols, automated processing, and final reports illustrating carbon sequestration in pounds, carbon storage in pounds, and avoided runoff in cubic feet.

i-Tree's database assigns values for each tree species and size types. The calculation used to determine CO^2 sequestered per tree (kg) = tree mass (kg of fresh biomass) x 65% (dry mass) x 50% (carbon %) x 3.67 x 120%. Avoided runoff is estimated based on local weather data from the nearest weather station.

Pacific Plaza's **175** trees sequester **1.6 metric tons** of atmospheric carbon and intercept approximately **13,748 gallons** of stormwater runoff annually. Carbon sequestered here equates to approximately **4,044 miles** driven by an average passenger vehicle annually.

175 trees planted on site

13,748 gallons/year stormwater runoff intercepted

1.6 metric tons/year carbon sequestered

= 4,044 miles/year driven by a passenger vehicle

top species

avoided runoff (gal)/year sequestration (lbs)/year

live oak	2,150 lbs
live oak 7,855 gal	
chinese elm	550 lbs
chinese elm 1,496 gal	
baldcypress	300 lbs
baldcypress 1,122 g	al

Figure 2.1 Top Species for Avoided Runoff and Sequestration

PACIFIC PLAZA STORMWATER RUNOFF

Stormwater Runoff

Stormwater runoff was calculated for the park for both pre- and post-development conditions. The total amount of stormwater runoff was calculated by utilizing the Rational Equation Method (*Q=CiA*) which equates peak discharge (runoff) of a drainage field (park) during a specific rain event.

287% ↑ pervious cover

Q (cfs): Peak Discharge
C: Runoff Coefficient, unique to pervious and impervious ground conditions i (inches/hour): Rainfall Intensity
A (acre): Drainage Area

Pacific Plaza prevents approximately **882,531 gallons** of stormwater from entering the city stormwater system annually, primarily due to a **287% increase** in pervious cover when compared to pre-development site conditions.

882,531 gallons/year stormwater runoff avoided

Figure 2.2 Pacific Plaza Pre-Development

Figure 2.3 Pacific Plaza Post-Development

Total Difference

882,530.93

PACIFIC PLAZA (2019)							
Stormwater Runoff Pre-Development							
Description	Area (sf)	A (area in acres)	i (inches/hour)	C (coefficient)	Q (Q=CiA) in cfs	Total Volume (cf/year)	Total Volume (gal/year)
Pervious	21,300.00	0.4890	0.0041	0.05	0.00010024	3,161.20	23,647.43
Impervious	140,360.00	3.2222	0.0041	0.70	0.00924778	291,637.92	2,181,603.00
Total	161,660.00					294,799.12	2,205,250.43

	Stormwater Runoff Post-Development						
Description	Area (sf)	A (area in acres)	i (inches/hour)	C (coefficient)	Q (Q=CiA) in cfs	Total Volume (cf/year)	Total Volume (gal/year)
Pervious	82,448.00	1.8927	0.0041	0.05	0.00038801	12,236.37	91,534.42
Impervious	79,212.00	1.8185	0.0041	0.70	0.00521897	164,585.52	1,231,185.07
Total	161,660.00					176,821.89	1,322,719.50

Figure 2.4 Stormwater Runoff Pre- and Post-Development Calculations

PACIFIC PLAZA HEAT ISLAND EFFECT

Heat Island Effect

In order to determine the cooling effect of the vegetation and tree canopy, the air temperature of the park was compared to the air temperature of an adjacent site with similar hardscape materials, but no vegetation or tree canopy. Multiple locations on each site were measured and averaged, and all temperature readings were taken during the same time periods on the same days. An ambient thermometer with 3 data loggers (with an accuracy of $\pm 1^{\circ}F$) was used to take readings approximately 12-15 inches above the ground.

The average air temperature in Pacific Plaza on a typical summer day was **reduced** by an average of **10.3°F in the morning** and **8.1°F in the afternoon** through the presence of canopy coverage and vegetation.

10.3°F↓ average AM air temp

8.1°F ↓ average PM air temp

Temperature Data [°F]
Pacific Plaza

Day 1: August 09, 2022

Buy I. August 05, 2022				
Location	Time	Site Temp	Comp Site Temp	Difference
Site 1: Canopy/pervious cover				
	10a	92.9	102.1	9.2
	4p	97.6	108.5	10.9
Site 2: Canopy/impervious cover				
	10a	94.9	102.1	7.2
	4p	102.1	108.5	6.4

Day 2: August 11, 2022

Location	Time	Site Temp	Comp Site Temp	Difference
Site 1: Canopy/pervious cover				
	10a	88.6	102.1	13.5
	4p	99.7	108.5	8.8
Site 2: Canopy/impervious cover				
	10a	90.7	102.1	11.4
	4p	102.2	108.5	6.3

Figure 2.5 Temperature Measurement Locations

S S S S R R \bigcirc \square

WEST END SQUARE CARBON SEQUESTRATION | TREES

Carbon Sequestration | Trees

Carbon sequestration and stormwater runoff avoidance were calculated for the trees on site using i-Tree Eco v6. i-Tree Eco v6 is a software application within a suite of tools that utilizes data to estimate ecosystem services and structural characteristics of rural and urban forests. The application provides sampling and data collection protocols, automated processing, and final reports illustrating carbon sequestration in pounds, carbon storage in pounds, and avoided runoff in cubic feet.

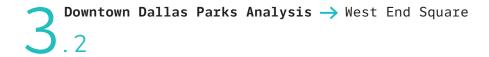
i-Tree's database assigns values for each tree species and size types. The calculation used to determine CO^2 sequestered per tree (kg) = tree mass (kg of fresh biomass) x 65% (dry mass) x 50% (carbon %) x 3.67 x 120%. Avoided runoff is estimated based on local weather data from the nearest weather station.

West End Square's **44** trees sequester **0.2 metric tons** of atmospheric carbon and intercept approximately **1,462 gallons** of stormwater runoff annually. Carbon sequestered here equates to approximately **399 miles** driven by an average passenger vehicle annually.

44 trees planted on site

1,462 gallons/year stormwater runoff intercepted

0.2 metric tons/year carbon sequestered


-399 miles/year driven by a passenger vehicle

top species

avoided runoff (gal)/year sequestration (lbs)/year

Figure 3.1 Top Species for Avoided Runoff and Sequestration

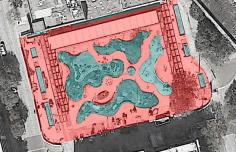
WEST END SQUARE STORMWATER RUNOFF

Stormwater Runoff

Stormwater runoff was calculated for the park for both pre- and post-development conditions. The total amount of stormwater runoff was calculated by utilizing the Rational Equation Method (*Q=CiA*) which equates peak discharge (runoff) of a drainage field (park) during a specific rain event.

751% ↑ pervious cover

Q (cfs): Peak Discharge
C: Runoff Coefficient, unique to pervious and impervious ground conditions i (inches/hour): Rainfall Intensity
A (acre): Drainage Area


West End Square prevents approximately **166,409 gallons** of stormwater from entering the city stormwater system annually, primarily due to a **751% increase** in pervious cover when compared to pre-development site conditions.

166,409 gallons/year stormwater runoff avoided

Figure 3.2 West End Square Pre-Development

Figure 3.3 West End Square Post-Development

Total Difference

166,409.07

	WEST END SQUARE (2021)										
	Stormwater Runoff Pre-Development										
Description	Area (sf)	A (area in acres)	i (inches/hour)	C (coefficient)	Q (Q=CiA) in cfs	Total Volume (cf/year)	Total Volume (gal/year)				
Pervious	1,535.00	0.0352	0.0041	0.05	0.00000722	227.81	1,704.17				
Impervious	41,716.00	0.9577	0.0041	0.70	0.00274851	86,676.88	648,388.08				
Total	43,251.00					86,904.70	650,092.25				

Stormwater Runoff Post-Development									
Description	Area (sf)	A (area in acres)	i (inches/hour)	C (coefficient)	Q (Q=CiA) in cfs	Total Volume (cf/year)	Total Volume (gal/year)		
Pervious	13,065.00	0.2999	0.0041	0.05	0.00006149	1,939.02	14,504.87		
Impervious	30,186.00	0.6930	0.0041	0.70	0.00198884	62,720.02	469,178.31		
Total	43,251.00					64,659.04	483,683.18		

Figure 3.4 Stormwater Runoff Pre- and Post-Development Calculations

WEST END SQUARE HEAT ISLAND EFFECT

Heat Island Effect

In order to determine the cooling effect of the vegetation and tree canopy, the air temperature of the park was compared to the air temperature of an adjacent site with similar hardscape materials, but no vegetation or tree canopy. Multiple locations on each site were measured and averaged, and all temperature readings were taken during the same time periods on the same days. An ambient thermometer with 3 data loggers (with an accuracy of $\pm 1^{\circ}F$) was used to take readings approximately 12-15 inches above the ground.

The average air temperature in West End Square on a typical summer day was **reduced** by an average of **11.0°F** in the morning and **8.1°F** in the afternoon through the presence of canopy coverage and vegetation.

11.0°F↓ average AM air temp

8.1°F ↓ average PM air temp

West End Square						

Day 1: September 18, 2022								
Location	Time	Site Temp	Comp Site Temp	Difference				
Site 1: Canopy/pervious cover								
	10a	87.8	100.1	12.3				
	4p	96.6	105.7	9.1				
Site 2: Canopy/impervious cover	•							
	10a	90.4	100.1	9.7				
	4p	98.6	105.7	7.1				

Y $\boldsymbol{\mathcal{C}}$ $\boldsymbol{\Upsilon}$ ____ Z ш A \bigcirc

CARPENTER PARK CARBON SEQUESTRATION | TREES

Carbon Sequestration | Trees

Carbon sequestration and stormwater runoff avoidance were calculated for the trees on site using i-Tree Eco v6. i-Tree Eco v6 is a software application within a suite of tools that utilizes data to estimate ecosystem services and structural characteristics of rural and urban forests. The application provides sampling and data collection protocols, automated processing, and final reports illustrating carbon sequestration in pounds, carbon storage in pounds, and avoided runoff in cubic feet.

i-Tree's database assigns values for each tree species and size types. The calculation used to determine CO^2 sequestered per tree (kg) = tree mass (kg of fresh biomass) x 65% (dry mass) x 50% (carbon %) x 3.67 x 120%. Avoided runoff is estimated based on local weather data from the nearest weather station.

Carpenter Park's **146** trees sequester **0.9 metric tons** of atmospheric carbon and intercept approximately **7,727 gallons** of stormwater runoff annually. Carbon sequestered here equates to approximately **2,333** miles driven by an average passenger vehicle annually.

146 trees planted on site

7,727 gallons/year stormwater runoff intercepted

0.9 metric tons/year carbon sequestered

= 2,333 miles/year driven by a passenger vehicle

top species

avoided runoff (gal)/year sequestration (lbs)/year

live oak	500 lbs	
live oak	1,800 gal	
chinese elm	475 lbs	
chinese elm	1,272 gal	
baldcypress	150 lbs	
baldcypress	1,009 gal	

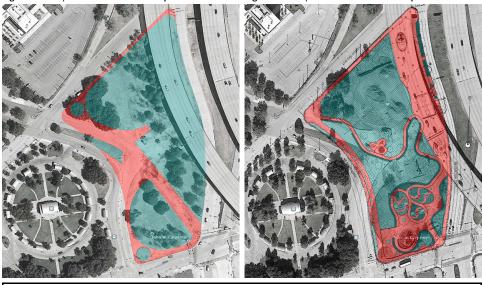
Figure 4.1 Top Species for Avoided Runoff and Sequestration

CARPENTER PARK STORMWATER RUNOFF

Stormwater Runoff

Stormwater runoff was calculated for the park for both pre- and post-development conditions. The total amount of stormwater runoff was calculated by utilizing the Rational Equation Method (*Q=CiA*) which equates peak discharge (runoff) of a drainage field (park) during a specific rain event.

-22% ↑ pervious cover


Q (cfs): Peak Discharge
 C: Runoff Coefficient, unique to pervious and impervious ground conditions i (inches/hour): Rainfall Intensity
 A (acre): Drainage Area

Carpenter Park prevents approximately -575,518 gallons of stormwater from entering the city stormwater system annually, primarily due to a -22% increase in pervious cover when compared to pre-development site conditions. The negative metrics here are the result of an intentional increase in hardscape due to the park's nature of serving the public as more of a plaza in addition to the freeway adjacency.

-575,518 gallons/year stormwater runoff avoided

Figure 4.2 Carpenter Park Pre-Development

22.01.49公十13.05省路。										
CARPENTER PARK (2022)										
			Stormwater R	lunoff Pre-De	velopment					
Description	Area (sf)	A (area in acres)	i (inches/hour)	C (coefficient)	Q (Q=CiA) in cfs	Total Volume (cf/year)	Total Volume (gal/year)			
Pervious	182,455.00	4.1886	0.0041	0.05	0.00085866	27,078.73	202,562.99			
Impervious	67,213.00	1.5430	0.0041	0.70	0.00442840	139,654.17	1,044,685.68			
Total	249,668.00					166,732.91	1,247,248.67			
			Stormwater R	unoff Post-De	evelopment					
Description	Area (sf)	A (area in acres)	i (inches/hour)	C (coefficient)	Q (Q=CiA) in cfs	Total Volume (cf/year)	Total Volume (gal/year)			
Pervious	142,579.00	3.2732	0.0041	0.05	0.00067100	21,160.61	158,292.34			
Impervious	107,089.00	2.4584	0.0041	0.70	0.00705568	222,507.93	1,664,474.81			
Total	249,668.00					243,668.54	1,822,767.14			

CARPENTER PARK HEAT ISLAND EFFECT

Heat Island Effect

In order to determine the cooling effect of the vegetation and tree canopy, the air temperature of the park was compared to the air temperature of an adjacent site with similar hardscape materials, but no vegetation or tree canopy. Multiple locations on each site were measured and averaged, and all temperature readings were taken during the same time periods on the same days. An ambient thermometer with 3 data loggers (with an accuracy of $\pm 1^{\circ}F$) was used to take readings approximately 12-15 inches above the ground.

The average air temperature in Carpenter Park on a typical summer day was **reduced** by an average of **8.3°F in the morning** and **10.4°F in the afternoon** through the presence of canopy coverage and vegetation.

8.3°F ↓ average AM air temp

10.4°F ↓ average PM air temp

	Temperature Data [°F]				
Carpenter Park					

Day 1: August 12, 2022

Duy 1. August 12, 2022				
Location	Time	Site Temp	Comp Site Temp	Difference
Site 1: Canopy/pervious cover				
	10a	90.4	99.9	9.5
	4p	97.7	110.7	13.0
Site 2: Canopy/impervious cover				
	10a	94.0	99.9	5.9
	4p	102.8	110.7	7.9

Day 2: September 20, 2022

Location	Time	Site Temp	Comp Site Temp	Difference
Site 1: Canopy/pervious cover				
	10a	90.3	100.0	9.7
	4p	96.4	107.2	10.8
Site 2: Canopy/impervious cover				
	10a	92.1	100.0	7.9
	4p	97.5	107.2	9.7

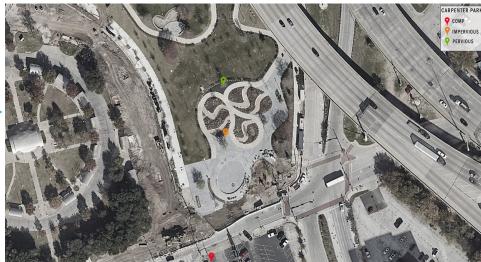


Figure 4.5 Temperature Measurement Locations

 \mathbf{Y} \sim \triangleleft \bigcirc \bigcirc 0 3 \triangleleft

I

HARWOOD PARK CARBON SEQUESTRATION | TREES

Carbon Sequestration | Trees

Carbon sequestration and stormwater runoff avoidance were calculated for the trees on site using i-Tree Eco v6. i-Tree Eco v6 is a software application within a suite of tools that utilizes data to estimate ecosystem services and structural characteristics of rural and urban forests. The application provides sampling and data collection protocols, automated processing, and final reports illustrating carbon sequestration in pounds, carbon storage in pounds, and avoided runoff in cubic feet.

i-Tree's database assigns values for each tree species and size types. The calculation used to determine CO^2 sequestered per tree (kg) = tree mass (kg of fresh biomass) x 65% (dry mass) x 50% (carbon %) x 3.67 x 120%. Avoided runoff is estimated based on local weather data from the nearest weather station.

Harwood Park's **248** trees sequester **1.2 metric tons** of atmospheric carbon and intercept approximately **8,340 gallons** of stormwater runoff annually. Carbon sequestered here equates to approximately **2,979 miles** driven by an average passenger vehicle annually.

248 trees planted on site

8,340 gallons/year stormwater runoff intercepted

1.2 metric tons/year carbon sequestered

= 2,979 miles/year driven by a passenger vehicle

top species

avoided runoff (gal)/year sequestration (lbs)/year

 chinkapin oak
 415 lbs

 cedar elm
 1,085 gal

 cedar elm
 285 lbs

 chinkapin oak
 935 gal

 yaupon
 270 lbs

 mexican sycamore
 860 gal

Figure 5.1 Top Species for Avoided Runoff and Sequestration

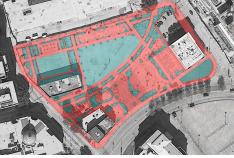
HARWOOD PARK STORMWATER RUNOFF

Stormwater Runoff

Stormwater runoff was calculated for the park for both pre- and post-development conditions. The total amount of stormwater runoff was calculated by utilizing the Rational Equation Method (*Q=CiA*) which equates peak discharge (runoff) of a drainage field (park) during a specific rain event.

1,075% ↑ pervious cover

Q (cfs): Peak Discharge
C: Runoff Coefficient, unique to pervious and impervious ground conditions i (inches/hour): Rainfall Intensity
A (acre): Drainage Area


Harwood Park prevents approximately **805,720 gallons** of stormwater from entering the city stormwater system annually, primarily due to a **1,075% increase** in pervious cover when compared to pre-development site conditions.

805,720 gallons/year stormwater runoff avoided

Figure 5.2 Harwood Park Pre-Development

Figure 5.3 Harwood Park Post-Development

Total Difference

805,720.09

	HARWOOD PARK (2023 ant.)										
	Stormwater Runoff Pre-Development										
Description	Area (sf)	A (area in acres)	i (inches/hour)	C (coefficient)	Q (Q=CiA) in cfs	Total Volume (cf/year)	Total Volume (gal/year)				
Pervious	5,194.00	0.1192	0.0041	0.05	0.00002444	770.86	5,766.42				
Impervious	145,976.00	3.3511	0.0041	0.70	0.00961779	303,306.76	2,268,891.99				
Total	151,170.00					304,077.62	2,274,658.41				

Stormwater Runoff Post-Development								
Description	Area (sf)	A (area in acres)	i (inches/hour)	C (coefficient)	Q (Q=CiA) in cfs	Total Volume (cf/year)	Total Volume (gal/year)	
Pervious	61,020.00	1.4008	0.0041	0.05	0.00028717	9,056.17	67,744.89	
Impervious	90,150.00	2.0696	0.0041	0.70	0.00593963	187,312.33	1,401,193.44	
Total	151,170.00					196,368.50	1,468,938.32	

Figure 5.4 Stormwater Runoff Pre- and Post-Development Calculations

5.		

HARWOOD PARK HEAT ISLAND EFFECT

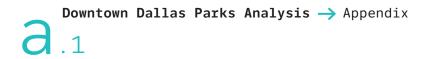
DATA PENDING

Heat Island Effect

This data is recommended to be collected during the summer when air and surface temperatures are at their highest once the park is completed.

In order to determine the cooling effect of the vegetation and tree canopy, the air temperature of the park should be compared to the air temperature of an adjacent site with similar hardscape materials, but no vegetation or tree canopy. Multiple locations on each site should be measured and averaged, and all temperature readings should be taken during the same time periods on the same day. An ambient thermometer with 3 data loggers (with an accuracy of ±1°F) should be used to take readings approximately 12-15 inches above the ground.

a



н

Z

ш

۵_

DOWNTOWN DALLAS PARKS ADDITIONAL INFORMATION

1 Carbon Sequestration Only trees were included in this analysis.

2 Stormwater Runoff No additional information.

3 Heat Island Effect No additional information.

SOURCES & LIMITATIONS DOWNTOWN DALLAS PARKS

Park Introductions & Background

Sources: Individual area Sanborn maps: Perry-Castañeda Library Map Collection, UT Austin

1 Carbon Sequestration Sources:

EPA Greenhouse Gas Equivalencies Calculator. Accessed February 28, 2022. https://www. epa.gov/energy/greenhouse-gas-equivalencies-calculator

i-Tree Eco v6. Accessed February 8, 2022. https://www.itreetools.org/eco/index.php

Tree schedules were provided by the Landscape Architects: Civic Garden: Hargreaves Jones Pacific Plaza: SWA Dallas West End Square: James Corner Field Operations Carpenter Park: Hargreaves Jones Harwood Park: Ten Eyck Landscape Architects

Limitations:

1. The tree species and breakdowns used for these calculations were based off of the original construction documents provided by the landscape architect. These calculations do not account for changes in the field during construction or ongoing maintenance, replacement, or repair.

2. iTree does not take into account groundcover and while shrubs can be taken into account, they were not included in this analysis. The benefits discussed above will increase over time.

2 Stormwater Runoff Sources:

2

Rational Equation Method. Accessed February 13, 2022. https://www.lmnoeng.com/ Hydrology/rational.php

Material, plant/tree schedules, and irrigation data were provided by the Landscape Architects:

Civic Garden: Hargreaves Jones Pacific Plaza: SWA Dallas West End Square: James Corner Field Operations Carpenter Park: Hargreaves Jones Harwood Park: Ten Eyck Landscape Architects

Limitations:

1. Precision: There may be small errors caused by manual tracing of aerial imagery.

2. Image quality: While the quality of the pre-development images is very high, there are portions that are pixelated and/or covered in shadow from adjacent buildings. Areas were estimated to the best of the team's capability.

3. The equation Q=CiA, when scaled out to represent the total hourly rainfall during any given hour throughout the year, doesn't take into account large rainfall events, where total discharge may be greater than average.

3 Heat Island Effect Sources:

This data was collected on site by the research team from August 6-14, 2022.

Limitations:

1. The research team relied on the ambient thermometer and data loggers for data collection. Though this equipment was tested for accuracy, there still exists the potential for slight error and inaccuracy. The range for these data loggers was 300 feet, therefore the adjacent park site chosen had to be within that range for this comparison.